基于影响度介数中心性的多智能体牵制控制算法
作者:
作者单位:

(解放军陆军工程大学指挥控制工程学院,南京 210007)

作者简介:

通讯作者:

E-mail: paper_review@126.com.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2018YFC0806900);中国博士后科学基金项目(2018M633757);江苏省重点研发计划项目(BE2016904,BE2017616,BE2018754,BE2019762).


Multi-agent pinning control algorithm based on betweenness centrality with influence degree
Author:
Affiliation:

(Command And Control Engineering College,Army Engineering University of PLA,Nanjing 210007)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多智能体系统在牵制控制过程中最终收敛时系统稳定性较差的问题,设计一种影响度矩阵,重新构建介数中心性算法来完成牵制控制节点选择工作.首先,根据子网的度分布计算影响度矩阵;其次,由影响度矩阵计算子网的介数中心性分布矩阵;最后,根据介数中心性选择牵制控制节点,既保留个体本身的重要性,也引入邻居个体重要性对其影响程度.经过对比实验验证了影响度介数中心性算法可有效增强多智能体系统的鲁棒性并提高系统的收敛速度.

    Abstract:

    Aiming at the poor stability of the final convergence of multi-agent systems in the process of pinning control, we design an influence degree matrix and reconstruct an intermediate centrality algorithm to complete the selection of pinning control nodes. Firstly, an influence degree matrix is calculated according to degree distribution of subnets. Then, the influence degree matrix is used to calculate the intermediate centrality distribution matrix of the subnet. Finally, traction control nodes are selected according to the distribution of betweenness centrality. We not only preserve the importance of the individual in the system, but also introduce the influence of the importance of the individual in the neighborhood. Comparative experiments show that the betweenness centrality algorithm can greatly enhance the robustness of multi-agent systems and improve the convergence speed of the system.

    参考文献
    相似文献
    引证文献
引用本文

何明,马子玉,刘锦涛,等.基于影响度介数中心性的多智能体牵制控制算法[J].控制与决策,2021,36(6):1442-1448

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-10
  • 出版日期: 2021-06-20