双种群混合遗传算法求解具有预防性维护的分布式柔性作业车间调度问题
作者:
作者单位:

上海市华东理工大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61973120, 62076095, 61673175, 61573144)


Two-population Hybrid Genetic Algorithm for Distributed Flexible Job-Shop Scheduling Problem with Preventive Maintenance
Author:
Affiliation:

East China University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (61973120, 62076095, 61673175, 61573144)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在实际生产过程中,生产调度和设备维护相互影响,因此两者应该统筹优化。为研究具有预防性维护的分布式柔性作业车间调度问题,以最小化最大完工时间为目标,提出了一种双种群混合遗传算法。结合问题特性,设计了三维编码以及对应的机器解码方案;采用不同的策略初始化种群以均衡一部分工厂负载;为双种群设计不同的交叉变异算子提高算法的多样性;利用交换精英解的方法实现两个种群的协作优化;同时针对关键工厂和预防性维护操作设计相应的局部搜索。最后对比现有算法,在同构和异构工厂的算例上进行实验,使用正交试验法优化算法参数设置。实验结果验证了局部搜索以及种群协作的有效性和双种群混合遗传算法求解具有预防性维护的分布式柔性作业车间调度问题的优越性。

    Abstract:

    In actual production, production scheduling and equipment maintenance affect each other, and they should be optimized together. In order to study the distributed flexible job-shop scheduling problem with preventive maintenance, a hybrid genetic algorithm with two-population optimization mechanism is proposed to minimize the maximum completion time. Combined with the characteristics of the problem, the 3-D encoding and the corresponding decoding scheme are designed. Different strategies are used to initialize the population to balance part of the factory load. Different crossover and mutation operators are designed for the two populations to improve the diversity of the algorithm. The cooperative optimization of two populations is realized by the method of exchanging elite solutions. Local searches are designed for critical factory and preventive maintenance operations. Finally, compared with the existing algorithms, experiments on homogeneous and heterogeneous factories are carried, and orthogonal test method is used to optimize the parameter setting of the algorithm. The simulation results prove the effectiveness of local search and population cooperation and the superiority of the two-population hybrid genetic algorithm to solve the distributed flexible job shop scheduling problem with preventive maintenance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-02
  • 最后修改日期:2021-09-15
  • 录用日期:2021-09-22
  • 在线发布日期: 2021-10-01
  • 出版日期: