V2X异构车载网络下智能任务卸载策略研究
作者:
作者单位:

1.南京信息职业技术学院;2.南京理工大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Intelligent Task Offloading Strategy in V2X Heterogeneous Vehicular Networks
Author:
Affiliation:

1.Nanjing College of Information Technology;2.Nanjing University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着自动驾驶技术的迅速发展,车辆日益增长的处理需求和资源受限的车载处理器之间的矛盾日渐突出.车载边缘计算的出现,解决了车载资源的物理限制,增强了单个车辆的计算能力.然而,由于车载服务通常具有时延敏感性,如何选择合适的通信接入技术,更好地满足自动驾驶场景中时延要求便成为了一个挑战性难题.本文综合考虑两种V2X通信接入技术,即短距通信(DSRC)和基于蜂窝网的车载通信(C-V2X),提出一种V2X异构车载网络任务卸载模型.首先分析车辆移动性特征,并对车载资源进行虚拟化处理;然后,基于半马尔可夫决策过程原理对任务卸载问题进行建模,分别制定状态、动作、奖励和转移概率;最后基于强化学习智能算法获取最优任务卸载策略,并通过大量数值仿真实验证明其任务卸载性能优于贪婪算法.

    Abstract:

    With the rapid development of autonomous driving technology, the contradiction between the increasing processing requirements of vehicles and the resource-limited on-board processors is increasingly prominent.The emergence of vehicular edge computing solves the physical limitation of on-board resources and enhances the computing capacity of a single vehicle.However, due to the delay-sensitive of vehicular services in autonomous driving scenarios, how to choose the appropriate access technology to satisfy the delay constraint of vehicular services has become a challenge.In this paper, two kinds of V2X communication technologies, namely short range communication (DSRC) and cellular vehicle-mounted communication (C-V2X), are considered comprehensively, and a task offloading model of V2X heterogeneous vehiclular network is proposed. Firstly, the characteristics of vehicle mobility are analyzed, and the on-board resources are virtualized.Then, the task offloading problem was modeled based on the principle of semi-Markov decision processes(SMDP), and the state, action, reward and transition probability were defined respectively.Finally, the optimal task offloading strategy is obtained based on the reinforcement learning intelligent algorithm, and the performance of the algorithm is proved to be better than the greedy algorithm through a large number of numerical simulations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-21
  • 最后修改日期:2021-08-07
  • 录用日期:2021-08-09
  • 在线发布日期: 2021-09-01
  • 出版日期: