离散蝙蝠算法在三阶段装配流水线调度问题的应用研究
作者:
作者单位:

东华大学

作者简介:

通讯作者:

中图分类号:

C93

基金项目:


Research on Improved Discrete Bat Algorithm in Three-Stage Assembly Flowshop Problem
Author:
Affiliation:

Donghua University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决三阶段装配流水线调度问题,提出一种改进的离散型蝙蝠算法(DBA)。针对所提问题的瓶颈期,提出下限理论,改进三阶段瓶颈期的下限公式,并引入调度模型,生成初始种群,并重新划分蝙蝠的捕食范围(HR),通过捕食行为、迁移行为的改进,提高局部搜索的能力,以有效地提高离散蝙蝠算法的性能;改进了K-means聚类算法,将具有最高相似性的蝙蝠进行分组,缩短计算时间,加快算法收敛速度。通过对不同规模实例的仿真实验与对比分析,对机器、产品和组的数量进行测试,验证了DBA的总体性能比其他算法更优;在算法的有效性和解的质量方面,通过对动态控制参数、DHR和精英策略的改进,有效地增强了算法的搜索能力。

    Abstract:

    In order to solve the three-stage assembly flowshop scheduling problem, this paper proposes an improved discrete bat algorithm (DBA). Aiming at the bottleneck period of the question, this paper proposes the lower limit theory and improves the lower limit formula of the three-stage bottleneck period. At the same time, a scheduling model is introduced to generate the initial population, and the bat"s hunting range (HR) is re-divided. Through the improvement of predation behavior and migration behavior, the local search ability of the algorithm is improved, and the performance of the discrete bat algorithm is effectively improved. At the same time, the K-means clustering algorithm is improved to group the bats with the highest similarity, shortening the calculation time and speed up the algorithm convergence speed. Through simulation experiments and comparative analysis of examples of different scales, the number of machines, products and sets is tested, and the overall performance of the DBA is verified to be better than other algorithms; in terms of the effectiveness of the algorithm and the quality of the solution, the dynamic control parameters , DHR and elite strategy improvements have effectively enhanced the algorithm"s search capabilities.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-11
  • 最后修改日期:2020-05-08
  • 录用日期:2020-05-12
  • 在线发布日期:
  • 出版日期: