基于协同聚类和权重注意力稀疏自编码网络的变化检测方法
作者:
作者单位:

大连理工大学电子信息与电气工程工程学部

作者简介:

通讯作者:

中图分类号:

TP753

基金项目:

国家重点研发计划(2016YFC0400903) ,中央高校基本科研业务费专项资金(DUT20LAB114,DUT2018TB06)


Change detection approach based on cooperative clustering and weighted-attention sparse autoencoder
Author:
Affiliation:

Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology

Fund Project:

National Key Research and Development Program of China(2016YFC0400903), Fundamental Research Funds for the Central Universities(DUT20LAB114,DUT2018TB06)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感变化检测对于监督和管理土地资源利用具有重要的作用.针对监督变化检测需要人为干预训练样本的劣势、不平衡数据问题以及基于像素变化检测中的“椒盐”现象,提出了基于协同聚类和权重注意力稀疏自编码网络的变化检测方法.方法采用模糊c均值和K-means对差异图协同聚类得到训练和待分类数据,同时在样本中考虑灰度共生矩阵特征,并利用合成少数过采样方法扩充变化样本以解决样本不平衡问题.通过逐层权重注意力模块加强网络对正权重的学习和削弱负权重的影响,自编码分类性能得到提升,其分类结果在差异图的超像素分割边界的映射空间中根据约束条件剔除“椒盐”噪声生成变化检测图.所提出的网络在标准手写体数据集中相比主流自编码网络表现出了良好的分类性能和稳定性,所提方法在变化检测中达到了漏检测和误检测的平衡,实现了提高变化检测精度的同时减少人为干预的目的.

    Abstract:

    Remote sensing change detection plays an important role in the supervision and management of land resource utilization. A change detection approach based on collaborative clustering and weighted-attention sparse autoencoder is proposed, which aims at the disadvantage of human intervention in training samples in supervision change detection, the problem of unbalanced data and the phenomenon of "salt and pepper" in change detection based on pixel-level. Fuzzy c-means and K-means are adopted to cluster difference image for training data and data to be classified. Meanwhile, the gray level co-occurrence matrix feature is considered in the samples, and the synthetic minority oversampling technique is utilized to expand the changed samples for solving issues of sample imbalance. Through the layer-wise weight-attention module that enhances the learning of positive weights and weakens the impact of negative weights, the classification performance of autoencoder is improved, and classification results of which in the mapping space of the superpixel segmentation boundary of the difference image eliminate "salt and pepper" noises for generation of change detection map according to the specific constraints. Compared with the state-of-the-art autoencoders in the standard handwritten data set, the proposed autoencoder shows better classification performance and stability. The change detection approach achieves the balance of missing detection and false detection, which increases the accuracy of change detection and reduces the human intervention at the same time.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-23
  • 最后修改日期:2020-10-12
  • 录用日期:2020-10-12
  • 在线发布日期:
  • 出版日期: