一种面向连续受损路段的抢修队调度算法
作者:
作者单位:

合肥工业大学计算机与信息学院

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:


An algorithm for repair crew scheduling under continuously damaged road sections
Author:
Affiliation:

School of Computer Science and Information Engineering,Hefei University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    受损路网抢修是灾害应急响应中的一个重要内容,主要研究如何对抢修队进行有效的调度,以快速恢复受灾路网的交通能力,为后续的应急救援工作顺利展开提供有效的保证。已有工作在面向连续受损路段的受灾环境中往往难以给出有效的调度策略。为此,本文首先构建了改进的路网模型和马尔科夫决策模型,然后设计了相应的动作、状态和奖励函数,并基于Q学习设计了一种面向连续受损路段的道路抢修队调度改进算法。仿真实验结果表明,所提算法能够在连续受损路段的环境中具有更好的可靠性,且能以更小的代价给出更优的调度方案。

    Abstract:

    Repairing the damaged road network is an important part of the disaster emergency response. It mainly studies how to effectively dispatch the repair crew to quickly restore the traffic capacity of the damaged road network and provide an effective guarantee for the smooth implementation of the subsequent emergency rescue.However, the eixsting work cannot find a feasiblesolution under a large amount of continuously damaged road sections. To this end, this paper firstly constructs a road network model and a repair crew scheduling model based on Markov decision process, and then designs the corresponding actions, states and reward functions. Then, an algorithm for repair crew scheduling under continuously damaged road sections based on Q-learning is presented. The simulation results show that the proposed algorithm has good reliability and can obtain a better scheduling scheme at a lower cost in the environment of continuously damaged road sections.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-13
  • 最后修改日期:2021-02-20
  • 录用日期:2020-04-03
  • 在线发布日期:
  • 出版日期: