引用本文:王黎明,刘欣玥,李方义,等.基于机床超低待机状态的流水车间能耗调度[J].控制与决策,2021,36(1):143-151
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于机床超低待机状态的流水车间能耗调度
王黎明,刘欣玥,李方义,李剑峰,孔琳
(1. 山东大学机械工程学院,济南250061;2. 山东大学高效洁净制造教育部重点实验室,济南250061)
摘要:
为降低流水车间能源消耗,引入一种数控机床的超低待机状态,相比于将数控机床待机状态切换为停机状态的节能研究,可在不停机情况下降低数控机床加工间隔状态的功率,避免数控机床频繁启停.针对流水车间加工状态、待机状态及超低待机状态三元调度问题,提出基于工序平移的混合遗传算法,分别定义了不同的工序邻域移动操作,实现数控机床待机状态向超低待机状态和停机状态的转化,形成主动节能调度策略,提升遗传算法求解考虑超低待机状态的流水车间调度问题的优化能力.实验研究表明,启用超低待机状态能够降低流水车间10%以上的能耗,且基于工序平移的混合遗传算法求解考虑超低待机状态的流水车间调度问题性能优于遗传算法.
关键词:  绿色制造  机床能效  流水车间  车间调度  遗传算法  混合算法
DOI:10.13195/j.kzyjc.2019.0433
分类号:TH18
基金项目:国家自然科学基金项目(51805297);山东省自然科学基金项目(ZR2017BEE018).
Energy consumption scheduling in flow shop based on ultra-low idle state of numerical control machine tools
WANG Li-ming,LIU Xin-yue,LI Fang-yi,LI Jian-feng,KONG Lin
(1. School of Mechanical Engineering,Shandong University,Ji'nan250061,China;2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education,Shandong University,Ji'nan250061,China)
Abstract:
In order to reduce the energy consumption of the flow shop, an ultra-low idle state of the numerical control(NC) machine tools is introduced. Compared with the research on converting the idle state into the shutdown state, the ultra-low idle state can reduce the idle power without stopping the machine and avoiding frequent stopping the numerical control machine tools. A hybrid genetic algorithm based on process translation is proposed to solve the ternary scheduling problem in the flow shop considering the processing state, standby state and ultra-low idle state. The hybrid genetic algorithm defines different process neighborhood movement operations, and realizes the transformation of the NC machine tool from the standby state to the ultra-low idle state or off state. The hybrid genetic algorithm forms an active energy saving scheduling strategy and improves the optimization ability of the genetic algorithm to solve the flow shop energy consumption scheduling problem considering the ultra-low idle state. The experimental results show that the ultra-low idle state can effectively reduce energy consumption of the flow shop by 10%. The performance of the hybrid genetic algorithm is better than that of the genetic algorithm in solving flow shop energy saving scheduling problems considering the ultra-low idle state.
Key words:  manufacturing for environment  energy efficiency  flow shop  shop schedule  genetic algorithm  hybrid algorithm

用微信扫一扫

用微信扫一扫