引用本文:梁定坤,陈轶珩,孙宁,等.气动人工肌肉驱动的机器人控制方法研究现状概述[J].控制与决策,2021,36(1):27-41
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
气动人工肌肉驱动的机器人控制方法研究现状概述
梁定坤1,2,3, 陈轶珩1,3, 孙宁1,3, 吴易鸣1,3, 刘连庆2, 方勇纯1,3
(1. 南开大学人工智能学院机器人与信息自动化研究所,天津300350;2. 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016;3. 南开大学天津市智能机器人技术重点实验室,天津300350)
摘要:
随着机器人技术的飞速发展,传统执行器(如电机、液压驱动等)结构繁冗、体积庞大,越来越难以满足新一代智能机器人对轻质化与柔顺性的需求,具有更高柔顺性、更强安全性的气动人工肌肉日益受到广大学者的关注.气动人工肌肉结构简单、材料轻便、生物适应性好,在医疗康复、航空航天、水下作业、抢险救灾等领域均具有良好的适应性,可方便地用于驱动机器人完成多项复杂任务.然而,气动人工肌肉与生俱来的迟滞、高度非线性、蠕变等特性,为其驱动的柔性机器人精准智能控制带来了挑战.鉴于此,首先对气动人工肌肉的工作原理、优势缺陷、建模与应用现状等进行简要介绍;然后基于气动肌肉的主流模型,对近年来单、多气动人工肌肉驱动的机器人运动控制方法研究现状与最新进展进行重点阐述;最后根据当今研究现状与尚未解决的难题,简要分析气动人工肌肉驱动的机器人未来发展趋势.
关键词:  柔性机器人  气动人工肌肉  气动执行器  仿生关节  气动自动控制  迟滞补偿
DOI:10.13195/j.kzyjc.2020.0793
分类号:TP273
基金项目:国家重点研发计划项目(2018YFB1309000);辽宁省科技厅联合开放基金机器人学国家重点实验室开放基金项目(2020-KF-22-05);国家自然科学基金项目(61873134,U1706228);天津市自然科学基金项目(20JCYBJC01360).
Overview of control methods for pneumatic artificial muscle-actuated robots
LIANG Ding-kun1,2,3,CHEN Yi-heng1,3,SUN Ning1,3,WU Yi-ming1,3,LIU Lian-qing2,FANG Yong-chun1,3
(1. Institute of Robotics and Automatic Information Systems,College of Artificial Intelligence,Nankai University,Tianjin 300350, China;2. State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;3. Tianjin Key Laboratory of Intelligent Robotics,Nankai University,Tianjin 300350,China)
Abstract:
With the rapid development of robotics, it is more and more difficult for traditional actuators with redundant structures and large sizes (e.g., motors, hydraulic actuators, etc.) to meet the needs of lightweight and flexibility for the new generation of intelligent robots. Hence, pneumatic artificial muscle (PAM) actuators with higher flexibility and safety have been attracting more and more attention in recent years. The PAM is simple in structure, light in material, and good in biological adaptability. It has good adaptability in medical rehabilitation, aerospace, underwater operations, emergency relief and other fields, which can be easily used to actuate robots to complete a number of complex tasks. However, PAMs have inherent hysteresis, high nonlinearities, and creep characteristics, which bring challenges for accurate dynamic modeling and controller design for flexible robots actuated by PAMs. In this paper, first, we briefly introduce the PAM's working principle, advantages and disadvantages, modeling methods, and related applications. Then, based on the mainstream model of PAMs, the research status and latest progress of motion control methods for single and multi-PAM-driven robots in recent years are emphatically described. Finally, according to the current research progress and unsolved issues, future development trends of flexible robots driven by PAMs are summarized.
Key words:  flexible robots  pneumatic artificial muscle  pneumatic actuator  bionic joint  pneumatic automatic control  hysteresis compensation

用微信扫一扫

用微信扫一扫