引用本文:贾庆轩,艾冠群,高欣,等.基于不变网络模型和故障注入的分布式信息系统故障溯源方法[J].控制与决策,2020,35(11):2723-2732
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于不变网络模型和故障注入的分布式信息系统故障溯源方法
贾庆轩1, 艾冠群1, 高欣1, 李新鹏1,2, 阎博3,陈春旭1, 李军良4, 徐建航4, 刘震宇5, 庞博5
(1. 北京邮电大学自动化学院,北京100876;2. 国家电网有限公司,北京100031;3. 国网冀北电力有限公司,北京100054;4. 南瑞集团(国网电力科学研究院)有限公司,北京100192;5. 承德供电公司,河北承德067000)
摘要:
针对传统分布式信息系统故障溯源算法对于先验知识依赖严重的问题,提出一种基于不变网络与故障注入相结合的故障溯源方法.首先,利用系统日志中收集到的系统组件运行数据,构建系统的不变网络模型,在此基础上进行节点或组件故障注入及扩散建模,建立故障网络集;然后,根据原始时间序列取值情况,制定数据质量评价规则以甄别数据是否发生突变;最后,利用实际故障网络与故障网络集中故障网络局部拟合的方式进行故障溯源,并利用数据质量评价规则对该结果进行修正,实现对系统故障源的精确定位.在仿真数据集、某开源系统数据集和某电网调度系统实采数据上的实验结果表明,所提出方法具有更高的准确率.
关键词:  信息系统  故障溯源  时间序列  不变网络  故障注入  局部拟合
DOI:10.13195/j.kzyjc.2019.0214
分类号:TP307
基金项目:
Fault source location algorithm for distributed information system based on invariant network and fault injection
JIA Qing-xuan1,AI Guan-qun1,GAO Xin1,LI Xin-peng1,2,YAN Bo3,CHEN Chun-xu1,LI Jun-liang4, XU Jian-hang4,LIU Zhen-yu5,PANG Bo5
(1. School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China;2. State Grid Corporation of China,Beijing 100031,China;3. State Grid Jibei Electric Power Co., Ltd.,Beijing 100054,China;4. NARI Group(State Grid Electric Power Research Institute) Co., Ltd.,Beijing 100192,China;5. Chengde Power Supply Company,Chengdu 067000,China)
Abstract:
The normal fault source location algorithm depends too much on the prior knowledge of distributed information systems, therefore, this paper presents a fault source location algorithm based on the invariant network and fault injection. Firstly, the invariant network model of the system is established by using the running data of the system components collected in the system log and in order to obtain the fault network model and form a set, the fault injection and diffusion modeling of each component are carried out on the model. Then, according to the value of the original time series, the data quality evaluation rules are formulated to judge whether the data has changed violently. Finally, the source of the system fault is determined using the method of local fitting between the actual fault network and the centralized fault network, the data quality evaluation rules are used as result revise to realize the accurate location of system fault source. The results on the synthetic data set, the data set collected by an open source distributed information system and the actual data set of a power grid dispatching system show that the proposed method has higher accuracy.
Key words:  information systems  fault source location  time series  invariant network  fault injection  local fitting

用微信扫一扫

用微信扫一扫