引用本文:张雄涛,蒋云良,胡文军,等.并行集成具有高可解释的TSK模糊分类器[J].控制与决策,2020,35(10):2535-2542
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
并行集成具有高可解释的TSK模糊分类器
张雄涛1,2, 蒋云良2, 胡文军2, 王士同1
(1. 江南大学数字媒体学院,江苏无锡214122;2. 湖州师范学院信息工程学院,浙江湖州313000)
摘要:
针对分层Takagi-Sugeno-Kang(TSK)模糊分类器可解释性差,以及当增加或删除一个TSK模糊子分类器时Boosting模糊分类器需要重新训练所有TSK模糊子分类器等问题,提出一种并行集成具有高可解释的TSK模糊分类器EP-Q-TSK.该集成模糊分类器每个TSK模糊子分类器可以使用最小学习机(LLM)被并行地快速构建.作为一种新的集成学习方式,该分类器利用每个TSK模糊子分类器的增量输出来扩展原始验证数据空间,然后采用经典的模糊聚类算法FCM获取一系列代表性中心点,最后利用KNN对测试数据进行分类.在标准UCI数据集上,分别从分类性能和可解释性两方面验证了EP-Q-TSK的有效性.
关键词:  集成TSK模糊分类器  并行学习  最小学习机  代表性中心点
DOI:10.13195/j.kzyjc.2018.1794
分类号:TP181
基金项目:国家自然科学基金项目(61572236,61300151,61772198,61771193).
Ensemble TSK fuzzy classifiers with parallel learning and high interpretability
ZHANG Xiong-tao1,2,JIANG Yun-liang2,HU Wen-jun2,WANG Shi-tong1
(1. School of Digital Media,Jiangnan University,Wuxi 214122,China;2. School of Information Engineer,Huzhou University,Huzhou 313000,China)
Abstract:
Traditional ensemble Takagi-Sugeno-Kang(TSK) fuzzy subclassifiers face such challenges, hierarchical learning have no interpretability, because of the presence of intermediate variables, and when a new TSK fuzzy subclassifier is added to or removed from the structure of the current fuzzy classifier, boosting learning must retrain each TSK fuzzy subclassifier by appropriately assigning new weights. Therefore, An ensemble framework EP-Q-TSK of TSK fuzzy subclassifiers with parallel learning way is proposed. The proposed framework has the following distinctive characteristics: 1) Each TSK fuzzy subclassifier can be built quickly with least learning machine (LLM) in parallel; 2) As a novel ensemble learning, the proposed framework augments the original validation data space with the outputs of each TSK subclassifier in an incremental and inexpensive way, and then speed up the final classification on the validation data by using the FCM and the KNN method; 3) Enhanced classification performance by FCM & KNN is experimentally revealed, and the experimental results on benchmark datasets indicate the effectiveness of EP-Q-TSK and its parallel learning method in the sense of both enhanced classification performance and interpretability.
Key words:  ensembling Takagi-Sugeno-Kang(TSK) fuzzy subclassifiers  parallel learning  least learning machine  representative centroids

用微信扫一扫

用微信扫一扫