引用本文:安冬,国凌明,邵萌,等.基于暗通道先验的自适应超像素去雾算法[J].控制与决策,2020,35(8):1929-1934
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于暗通道先验的自适应超像素去雾算法
安冬1,2, 国凌明1, 邵萌1, 李颂华1, 石怀涛1
(1. 沈阳建筑大学机械工程学院,沈阳110168;2. 沈阳建筑大学分析与检测技术研究中心,沈阳110168)
摘要:
传统基于暗通道先验的图像去雾算法不能有效去除有雾图像在景深突变处的雾点,边界处容易引起光晕效应,对此提出一种基于暗通道先验的自适应超像素去雾算法.首先,在暗通道的获取过程中引入自适应方法判断当前像素邻域内是否具有多个景深物体,若仅存在相同景深物体,则直接求取此像素的暗通道,若存在多个景深物体,则引入超像素分割算法区分不同景深物体,减小景深变化对暗通道获取的影响,以求取更准确的暗通道;然后,估计粗略的透射率,并根据上下文约束细化透射率;最后,通过图像降质的逆过程求解去雾图像.实验结果表明,所提出的算法与暗通道先验单幅图像去雾(DCP)算法、基于边界邻域最大值滤波的快速图像去雾(EMDCP)算法、基于自适应暗原色的单幅图像去雾(ADCP)算法、带边界约束和上下文正则化的高效图像去雾(BCCR)算法相比,可将客观质量综合评价准则提高10%,能够抑制光晕效应,提高有雾图像的视觉效果.
关键词:  图像去雾  大气物理模型  暗通道先验  自适应方法  超像素分割  光晕效应
DOI:10.13195/j.kzyjc.2018.1539
分类号:TP391.4
基金项目:国家自然科学基金项目(51705340,51705341);辽宁省科学技术项目基金项目(20180550002);辽宁省高等学校基本科研项目(LJZ2017035);辽宁省重点研发计划项目(2017225016);国家重点研发计划项目(2017YFC0703903).
An adaptive superpixel defogging algorithm based on dark channel prior
AN Dong1,2,GUO Ling-ming1,SHAO Meng1,LI Song-hua1,SHI Huai-tao1
(1. School of Mechanical Engineering,Shenyang Jianzhu University,Shenyang110168,China;2. Research Center for Analysis and Detection Technology,Shenyang Jianzhu University,Shenyang110168,China)
Abstract:
The traditional defogging algorithm based on dark channel prior can not effectively remove the fog points in the sudden change of field depth, and it is easy to cause halo effect at the boundary. In this paper, an adaptive super-pixel defogging algorithm based on dark channel prior is proposed. Firstly, in the acquisition process of the dark channel, an adaptive method is introduced to determine whether there are multiple depth-of-field objects in the neighborhood of the current pixel. If there are only the same depth-of-field objects, the dark channel of the pixel can be obtained directly. If there are multiple depth-of-field objects, a super-pixel segmentation algorithm is introduced to distinguish different depth-of-field objects, so as to reduce the influence of depth-of-field change on dark channel acquisition and to obtain a more accurate dark channel. Then the rough transmittance is estimated, and the transmittance is refined according to the context constraints. Finally, the defogging image is solved by the inverse process of image degradation. The experimental results show that compared with dark channel prior (DCP), a fast image defogging algorithm based on edge-maximum filter (EMDCP), single image dehazing based on adaptive dark channel prior (ADCP) and efficient image dehazing with boundary constraint and contextual regularization (BCCR) algorithms, the comprehensive assessment criteria index of the proposed method is improved by 10%, which can suppress halo effect and improve the visual effect of foggy images.
Key words:  image defogging  atmospheric physical model  dark channel prior  adaptive method  super pixel segmentation  halo effect

用微信扫一扫

用微信扫一扫